Solutions

Solution. 1

- (a) There are 4 independent choices, so 10^4 .
- (b) $10 \cdot 9 \cdot 8 \cdot 7$.
- (c) Choose the remaining three: $9 \cdot 8 \cdot 7$.
- (d) $\binom{10}{4}$.

(e) Pick two additional digits and count all permutations: $\binom{8}{2} \times 4!$.

Solution. 2

It is easier to first count the number of forbidden shuffles. We have two different types of forbidden arrangements, see Fig. 2.

The number of decks with $A\heartsuit$ on top of $K\heartsuit$ is 51!, since we can remove the $A\heartsuit$, shuffle the remaining 51 different cards, and then place the ace of hearts on top of the king of hearts. In the same manner, we have 51! forbidden decks involving $A\blacklozenge$.

Finally, we need to count the number of elements in the intersection, i.e., decks where both of the forbidden configurations occur. We remove $A\heartsuit$ and $A\clubsuit$, shuffle the 50 cards, and insert the aces on the respective kings. This gives 50! shuffles. The number of forbidden configurations is therefore 51! + 51! - 50!, and the total number of good decks is

 $52! - 2 \times 51! + 50!.$

Solution. 3

Since there are duplicates of E, S and I, there are $11!/2^3$ different words.

Solution. 4

It is given by the multinomial coefficient

$$\binom{7}{2,2,3} = \frac{7!}{2! \times 2! \times 3!} = 210.$$

Solution. 5

It is given by the multinomial coefficient

$$\binom{8}{2,2,2,2} = \frac{8!}{2^4}$$

It is the same as counting number of different words we can create from AABBCCDD. For example, the word ADCBBCDA assign dish A to person 1 and person 8.

These must be chosen in an unordered fashion, since we later count all 4! permutations of the unordered digits.

Figure 2: The total deck of cards, 52!, and the two intersecting forbidden subsets.

Solution. 6

It is easier to consider the couples as labeled. We first pick 2 people to form couple A, then 2 other people to form couple B and so on. The number of ways to create *labeled* couples is

$$\binom{8}{2,2,2,2} = \frac{8!}{2^4}$$

However, all permutations of the 4 labels produce the same set of couples, so we need to divide this by 4!. The answer is therefore $\frac{8!}{4!\times 2^4}$.

Solution. 7

First, we sample the 5 types. That leaves space for 8 more, which we can choose freely, with repetition. The dots-and-bars formula tells us that there are

$$\binom{8+5-1}{5-1} = \binom{12}{4}$$

ways to do this.

Solution. 9

Dots and bars give

$$\binom{r+n-1}{n-1}.$$

Solution. 10

Let $y_1 = x_1 - 2$, $y_2 = x_2 - 3$, $y_3 = x_3 - 10$ and $y_4 = x_4 + 3$. We get a new equation where $y_i \ge 0$ and

$$(y_1+2) + (y_2+3) + (y_3+10) + (y_4-3) = 15, \qquad \Leftrightarrow$$

 $y_1 + y_2 + y_3 + y_4 = 3$

Dots and bars gives $\binom{3+4-1}{4-1}$ integer solutions.

Solution. 11

We add one extra variable to turn the inequality to an equality:

$$x_1 + x_2 + x_3 + x_4 + s = 15, \qquad s, x_i \ge 0.$$

This gives $\binom{15+5-1}{5-1}$ integer solutions.

Solution. 13

There are k!S(n,k) surjections — the quantity k! is responsible for the labeling.

Solution. 16

This problem is not a clear-cut standard problem as in the introduction. However, the fact that each letter appears at least once imposes a lot of restriction, as we only need to decide which two additional letters to add to abcd.

- We add two different letters. Thus, the letters appearing are one of abbccd, abbcdd or abccdd. To calculate the number of words we can make from abbccd, we use a multinomial coefficient, ⁶
 _(2,2,1,1).
- We add the same letter twice. This gives abbbcd, abcccd or abcddd, and each of these options give $\binom{6}{3,1,1,1}$ words.

Expanding the multinomials and putting it all together, there are in total

$$3\frac{6!}{(2!)^2} + 3\frac{6!}{3!}$$

words satisfying the requirements.

Solution. 19

We notice that if the positions of the b's and d's are fixed, then the positions of the remaining letters is uniquely determined by the restriction. For example,

 $b \square \square d \square b \square d \implies baadcbcd.$

To create a valid word, it is enough to first choose 2 positions of the 8 available for the b's and then 2 positions for the d's. This can be done in $\binom{8}{2,2,4} = \frac{8!}{2! \times 2! \times 4!}$ ways.

Solution. 42

- (a) There are $8 \times 7 \times \cdots \times 3$ ways.
- (b) There are $(8 \times 7 \times 6) \times (5 \times 4 \times 3)$ ways.
- (c) There are $\frac{1}{2}(8 \times 7 \times \cdots \times 3)$ ways, since the lines two pairs of lines (abc, def) and (def, abc) are considered equal configurations.
- (d) There are $\binom{8}{6}$ ways.
- (e) We first choose 6 people, and then choose 3 of these to be in group A: (⁸₆)(⁶₃) ways.
- (f) There are $\frac{1}{2}\binom{8}{6}\binom{6}{3}$ ways.
- (g) There are $\binom{8}{6}\frac{1}{3!}\binom{6}{2!}$ ways.

This is a strong hint that we need to divide the problem into sub-cases. The fewer cases the better.

Solution. 43

- (a) There is only one way.
- (b) There is only one way.
- (c) Bars and stars give $\binom{6+2}{2}$ ways.
- (d) Bars and stars give $\binom{3+2}{2}$ ways.
- (e) This is the same as counting integer partitions of 6 into 3 parts. We get three ways, 4 + 1 + 1, 3 + 2 + 1 and 2 + 2 + 2.
- (f) Same as previous question, but we can have as many piles as we like. We get 11 ways,

Solution. 44

- (a) Each of the 6 spots has 8 options: 8^6 .
- (b) Also 8^6 .
- (c) We get $8^3 + \frac{1}{2} \times 8^3 \times (8^3 1)$ (the number of cases where groups are identical, plus number of cases where groups are different).
- (d) Bars and stars give $\binom{6+8-1}{8-1}$ ways the bars separate types.