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(d) to choose 6 of them and give them to three people, each person

get at least one.

(e) to choose 6 of them and make three non-empty (unlabeled)

groups.

(f) to choose 6 of them and divide them into piles.

Problem. 44

There are 8 types2 of cookies available in a store. Count the number 2 This indicates that repetition is
allowed — the same type can be used
several times

of ways

(a) to pick 6 of them and arrange them in a line.

(b) to pick 6 of them and place them into lines named A and B,

with 3 in each.

(c) to pick 6 of them and place them into two equal-sized unlabeled

lines.

(d) to pick 6 of them to make a group.

(e) to pick 6 of them and place them into groups named A and B,

with 3 in each.

(f) to pick 6 of them and make two equal-sized unlabeled groups.

(g) to pick 6 of them and make three equal-sized unlabeled groups.

(h) For 10 people to choose a cookie type, and each type is selected

by at least one person.

Solutions

Solution. 1

(a) There are 4 independent choices, so 104.

(b) 10 · 9 · 8 · 7.

(c) Choose the remaining three: 9 · 8 · 7.

(d) (10
4 ).

(e) Pick two additional digits and count all permutations: (8
2) × 4!. These must be chosen in an unordered

fashion, since we later count all 4!
permutations of the unordered digits.

Solution. 2

It is easier to first count the number of forbidden shuffles. We have

two different types of forbidden arrangements, see Fig. 2. ♥ ♠

Figure 2: The total deck of cards, 52!,
and the two intersecting forbidden
subsets.

The number of decks with A♥ on top of K♥ is 51!, since we can

remove the A♥, shuffle the remaining 51 different cards, and then

place the ace of hearts on top of the king of hearts. In the same

manner, we have 51! forbidden decks involving A♠.

Finally, we need to count the number of elements in the intersec-

tion, i.e., decks where both of the forbidden configurations occur. We
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remove A♥ and A♠, shuffle the 50 cards, and insert the aces on the

respective kings. This gives 50! shuffles. The number of forbidden

configurations is therefore 51! + 51! − 50!, and the total number of

good decks is

52! − 2 × 51! + 50!.

Solution. 3

Since there are duplicates of E, S and I, there are 11!/23 different

words.

Solution. 4

It is given by the multinomial coefficient

(
7

2, 2, 3

)
=

7!
2! × 2! × 3!

= 210.

Solution. 5

It is given by the multinomial coefficient

(
8

2, 2, 2, 2

)
=

8!
24

It is the same as counting number of different words we can create

from AABBCCDD. For example, the word ADCBBCDA assign dish A to

person 1 and person 8.

Solution. 6

It is easier to consider the couples as labeled. We first pick 2 people

to form couple A, then 2 other people to form couple B and so on.

The number of ways to create labeled couples is

(
8

2, 2, 2, 2

)
=

8!
24 .

However, all permutations of the 4 labels produce the same set of

couples, so we need to divide this by 4!. The answer is therefore
8!

4!×24 .

Solution. 7

First, we sample the 5 types. That leaves space for 8 more, which we

can choose freely, with repetition. The dots-and-bars formula tells us

that there are (
8 + 5 − 1

5 − 1

)
=

(
12
4

)

ways to do this.

Solution. 8

There are n types of derivatives and we need to select r of these

with repetition allowed. Order does not matter in which we compute

derivatives, so dots and bars give

(
r + n − 1

n − 1

)
.
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Solution. 9

Dots and bars give (
r + n − 1

n − 1

)
.

Solution. 10

Let y1 = x1 − 2, y2 = x2 − 3, y3 = x3 − 10 and y4 = x4 + 3.
We get a new equation where yi ≥ 0 and

(y1 + 2) + (y2 + 3) + (y3 + 10) + (y4 − 3) = 15, ⇔
y1 + y2 + y3 + y4 = 3

Dots and bars gives (3+4−1
4−1 ) integer solutions.

Solution. 11

We add one extra variable to turn the inequality to an equality:

x1 + x2 + x3 + x4 + s = 15, s, xi ≥ 0.

This gives (15+5−1
5−1 ) integer solutions.

Solution. 12

We divide into cases. The only possible values for x4 are x4 =

0, 1, 2, 3, since otherwise the left hand side is too large.

Case x4 = 0: We get 3(x1 + x2 + x3) = 22. No solutions as the right

hand side is not a multiple of 3

Case x4 = 1: We get 3(x1 + x2 + x3) = 15, so x1 + x2 + x3 = 5
which has (5+2

5 ) = 21 solutions.

Case x4 = 2: We get 3(x1 + x2 + x3) = 8, no solutions.

Case x4 = 3: We get 3(x1 + x2 + x3) = 1, no solutions.

Therefore, there are 21 solutions in total.

Solution. 13

There are k!S(n, k) surjections — the quantity k! is responsible for

the labeling.

Solution. 14

We first ride all rides once. That leaves 11 tokens which can be spent

as we please. We can ride the roller coaster 0, 1 or 2 times with the

remaining tokens:

• 0 times. We need to count non-negative integer solutions to

3h + 3c + 3w ≤ 11. This is the same as solving h + c + w + r = 3
where r represents the number of remaining tokens. Number of

solutions: C(3 + 4 − 1, 3)

• 1 time. Same strategy gives non-negative solutions to 3h + 3c +

3w ≤ 6, or h + c + w + r = 2. This gives C(2 + 4 − 1, 2) number of

solutions.
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• 2 times. After riding the coaster 2 times, we have one token left

and cannot ride anything else. Only 1 solution.

Total number of ways: (6
3) + (5

2) + 1 = 20 + 10 + 1 = 31.

Solution. 15

This is equivalent with solving 3x1 + 3x2 + 3x3 + 3x4 + 3x5 + 5y = 42,
xi, y ≥ 0. We see that 0 ≤ y ≤ 8 (we cannot afford 9 rides on the

expensive attraction).

Case by case analysis of y show that y = 0, y = 3, y = 6 are the

only possible choices for the remaining tokens to be a multiple of

3. This means we can ride cheap rides either 4, 9 or 14 times, so we

want to add up the number of solutions to

x1 + · · · + x5 = R, R ∈ {4, 9, 14}.

This gives the total answer(
4 + 5 − 1

5 − 1

)
+

(
9 + 5 − 1

5 − 1

)
+

(
14 + 5 − 1

5 − 1

)
.

Solution. 16

This problem is not a clear-cut standard problem as in the intro- This is a strong hint that we need to
divide the problem into sub-cases. The
fewer cases the better.

duction. However, the fact that each letter appears at least once

imposes a lot of restriction, as we only need to decide which two

additional letters to add to abcd.

• We add two different letters. Thus, the letters appearing are

one of abbccd, abbcdd or abccdd. To calculate the number of

words we can make from abbccd, we use a multinomial coefficient,

( 6
2,2,1,1).

• We add the same letter twice. This gives abbbcd, abcccd or

abcddd, and each of these options give ( 6
3,1,1,1) words.

Expanding the multinomials and putting it all together, there are in

total

3 6!
(2!)2 + 36!

3!
words satisfying the requirements.

Solution. 17

Without the extra restriction, the number of ways to do this is

3!S(8, 3): The Stirling number count ways to distribute the different

questions into three non-empty sets and the 3! account for the
different ways to distribute the sets among the students.

To construct the forbidden configurations, we can remove one of

the easy questions and distribute the remaining 7 questions among

the students. The student who gets the easy question is then also

given the second easy question. We see that this can be done in

3!S(7, 3) ways.
The final answer is therefore 3!S(8, 3) − 3!S(7, 3).
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Solution. 18

The recursion for Stirling numbers tell us that

S(n + 1, k + 1) = (k + 1)S(n, k + 1) + S(n, k)

⇔
S(n + 1, k + 1) − S(n, k) = (k + 1)S(n, k + 1)

and since (k + 1)S(n, k + 1) ≥ 0, the inequality must be true.

Solution. 19

We notice that if the positions of the b’s and d’s are fixed, then the

positions of the remaining letters is uniquely determined by the

restriction. For example,

b��d�b�d =⇒ baadcbcd.

To create a valid word, it is enough to first choose 2 positions of the

8 available for the b’s and then 2 positions for the d’s. This can be

done in ( 8
2,2,4) =

8!
2!×2!×4! ways.

Solution. 20

There are two cases to consider, either the A in the third position is

the first A in the word, or it is the second.

If the first A appears in the third spot, the word is of the form

XXAY..YA.. with only C’s and D’s between the A’s, and the X are one

of the letters in BCD.

There can be between 0 and 6 letters between the two A’s. The

number of words with k letters between the A’s is given by 2k × 38−k,

since we need to choose either C or D for the k letters and there are

three choices for each of the remaining 8 − k spots. Summing over the

possible values of k gives

6∑
k=0

2k38−k = 38
6∑

k=0

(
2
3

)k

.

This is a geometric sum and the formula for geometric sum gives Recall that
∑n

j=0 rj = 1−rn+1

1−r
.

38 × 1 − (2/3)7

1 − (2/3) = 38 ×
37−27

37

1/3 = 32(37 − 27).

There are now two more cases to consider — words of the

forms AYA... or XAA.... There are 2 × 37 words of the first form and Because the Y has two options, and the
remaining open spots have three38 words of the second form.

Adding the results for all cases give us in total

39 − 9 × 27 + 2 × 37 + 38.
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Solution. 41

As in the previous exercise of same flavor, let us number the spots,

and let A be the event that the people at spots 123 are in height

order, B be the event that 234 are in order and C the event that 345
are in order.

We seek 5! − |A ∪ B ∪ C| where the last term is computed via

inclusion-exclusion.

First note that

|A| = |B| = |C| =
(

5
3

)
× 2 × 2

as we first pick a 3-subset to of the people to put at the spots, then

decide if they should be standing in increasing or decreasing order,

and finally the remaining two people have two ways to stand in the

remaining spots.

Because of symmetry, |A ∩ B| = |B ∩ C|. To have A ∩ B, we note

that the people standing at 1234 must all be sorted in the same way. Either 123 and 234 are increasing, or
123 and 234 are both decreasingSimilar to the previous reasoning, this gives

|A ∩ B| = |B ∩ C| =
(

5
4

)
· 2.

To compute |A ∩ C|, we need to consider different subcases.

• A increasing and C increasing. This forces the tallest guy to

stand in the middle. We then choose 2 out of the 4 remaining to

stand in front. This uniquely determines the configuration, so

there are (4
2) such configuration.

• A decreasing and C increasing. Also (4
2).

• A increasing and C increasing. They must all be standing in

increasing order. Only one way.

• A decreasing and C decreasing. Only one way.

Adding everything up, |A ∩ C| = 2(4
2) + 2.

Finally, |A ∩ B ∩ C| has only two options — everything increasing

or everything decreasing. The final answer is therefore

5! − 3 × 4 ×
(

5
3

)
+

(
2 · 2 ·

(
5
4

)
+ 2

(
4
2

)
+ 2

)
− 2.

Solution. 42

(a) There are 8 × 7 × · · · × 3 ways.

(b) There are (8 × 7 × 6) × (5 × 4 × 3) ways.

(c) There are 1
2 (8 × 7 × · · · × 3) ways, since the lines two pairs of lines

(abc, def) and (def , abc) are considered equal configurations.

(d) There are (8
6) ways.

(e) We first choose 6 people, and then choose 3 of these to be in

group A: (8
6)(

6
3) ways.
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(f) There are 1
2 (

8
6)(

6
3) ways.

(g) There are (8
6)

1
3! (

6
2,2,2) ways.

Solution. 43

(a) There is only one way.

(b) There is only one way.

(c) Bars and stars give (6+2
2 ) ways.

(d) Bars and stars give (3+2
2 ) ways.

(e) This is the same as counting integer partitions of 6 into 3 parts.

We get three ways, 4 + 1 + 1, 3 + 2 + 1 and 2 + 2 + 2.

(f) Same as previous question, but we can have as many piles as we

like. We get 11 ways,

6 5+1 4+2 3+3

4+1+1 3+2+1 2+2+2 3+1+1+1

2+2+1+1 2+1+1+1+1 1+1+1+1+1+1.

Solution. 44

(a) Each of the 6 spots has 8 options: 86.

(b) Also 86.

(c) We get 83 + 1
2 × 83(×83 − 1) (the number of cases where groups

are identical, plus number of cases where groups are different).

(d) Bars and stars give (6+8−1
8−1 ) ways — the bars separate types.

(e) Bars and stars for each labeled group gives (3+8−1
8−1 )

2
.

(f) Bars and stars, but take into consideration when groups are

equal, and not equal:

(
3 + 8 − 1

8 − 1

)
+

1
2

(
3 + 8 − 1

8 − 1

) ((
3 + 8 − 1

8 − 1

)
− 1

)
.

(g) There are (2+8−1
8−1 ) possible groups of size 2 — let this number be

m. Then there are

(
m

3

)
+ m(m − 1) + m =

(
(9
7)

3

)
+

(
9
7

) ((
9
7

)
− 1

)
+

(
9
7

)

ways to make three equal-sized unlabeled groups. The terms

represents the cases when all groups different, two groups equal,

and all three groups equal, respectively.
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6
2,2,2) ways.
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